砕石のアスペクト比が 透水性舗装内部の流れに及ぼす影響

EFFECT OF ASPECT RATIO OF CRUSHED STONE ON FLOW IN PERMEABLE PAVEMENT

麓隆行*・冨迫健太** by Takayuki FUMOTO and Kenta TOMISAKO

1. はじめに

透水性舗装では、点で接着された粗骨材の間隙を利 用することで透水性を付与している。透水性舗装に関 する材料や構造の設計法は、多くの治験から確立され ており、舗装施工便覧¹¹やポーラスコンクリートの設計 指針(試案)²¹などが提示されている。しかし、いずれ も既存の規格化された材料を使用し、粒径のみに着目 した材料設計を想定しており、ほとんどの場合、その 空隙特性は空隙量のみで把握している。すなわち、最 大の特徴である空隙の形状と流れの視点に立脚した検 討はほとんどされていない。

例えば、水は粗骨材の間隙を利用した空間を流れる ことから、粗骨材の形状が丸いと間隙の蛇行が小さく、 水は下方向に流れやすいと考えられる。一方、それが 扁平であれば、転圧により粒子が横倒しになり、間隙 の蛇行が大きく下方向に流れにくいと考えられる。す なわち、同じ空隙量であっても間隙形状が流路に及ぼ す影響は大きく,粒子の形状は流下時間の制御に役立 っと考えられる。これは防災の観点からも、巨視的な 流れの制御や多量の降雨を流すことができる限界を知 るうえで重要だと考えられる。しかし、間隙形状と流 下メカニズムとの関係を詳細に検討した研究は少ない。

そこで、本研究では、砕石の扁平度合いを示す一つ の指標であるアスペクト比に着目し、アスペクト比が アスファルト試験板の見かけの流れやすさに及ぼす影 響について基礎的検討を行った。実験では、実験室内 で小型破砕機を用いて、異なるアスペクト比の砕石を 製造するための条件について検討した。その後、アス ペクト比 2.03, 2.32, 2.82の砕石で作製した空隙率20% のアスファルト試験板について、上面からの現場透水 試験報を用い、その流れの違いを検討した。その後、 試験板からコアボーリング装置にて採取したコア試験 体を用いた定水位透水試験や取得したX線CT画像を用 いた画像計測により、試験板の流れに違いが生じた機 構を考察した。

2. 実験概要

2.1 アスペクト比が異なる砕石の製造

硬質砂岩砕石をふるい分けてから、粒径5~19mmをボ ールミルで、粒径19~31.6mmをジョークラッシャで破 砕して3種類のアスペクト比の砕石を作製した。

図1および図2に使用した装置の外観と破砕機構を示 す。ボールミルは、円筒の中に鉄球と破砕したい原料 を入れ、円筒を回転させ、衝突と摩砕により粉砕を行 う装置である。そのため、衝突による破砕に加えて摩 砕により角を取ることが出来る。回転時間が増加する と、角張りを取る効果が強くなる。一方、ジョークラ ッシャは、固定した鋼板と揺動する鋼板で圧壊する装 置である。そのため、圧壊により、扁平な粒子になる 傾向がある。

アスペクト比は、X線CT³⁾により得られた砕石の3 次元画像に対して市販のソフトウェアを用いて各粒 子を同定し、楕円体に近似した際の短軸と長軸の比 から求めた⁴⁾。図3にその主な流れを示す。X線CT装

図1 ボールミルとジョークラッシャの外観

図2 ボールミルとジョークラッシャの破砕の機構

Crushed stone sample

X ray CT Image Particle separation image 図 3 砕石の粒子分離による形状計測過程

表1 砕石の撮影条件

Tube voltage (kV)	113
Tube current (µA)	100
Resolution (mm)	0.123051
Cupper plate thickness (mm)	0
Frame rate (f/s)	10
Binning mode	2×2
Projection number	2000

表2 砕石の粒子分離条件

Condition	Particle size (mm)		
Condition	4.75 - 9.50	9.50 - 16.0	
Threshold	44000		
Erosion times	1		
Distance considered as one	1.3		
particle (x Radius)			
Dilation times	1		
Removed small particle diameter (mm)	2.375		
Combined small particle	2.375	4.75	
diameter (mm)	2.575	,e	

置で撮影した3次元画像では、砕石は白色で間隙は黒 色で表現される。そこで市販のソフトウェアを用い て以下の作業を行った。まず、砕石とそれ以外を分 ける輝度の閾値を目視で決定し、砕石部分とそれ以 外の部分に分け、二値化処理を行った。その後、粒 子同士の接触点がくびれていることを利用し、独立 した粒子として分離していく粒子分離処理を行った。 ただし、粒子配列は複雑であるため、様々な近傍の 砕石同士が面で接触していると、隣り合う2つの粒子 が1つの粒子と判断されることがある。また、1つの 粒子でもくびれが大きいと、2つの粒子として分離さ れることがある。それらの判断誤差を減らすため、 各画素と隣り合う画素を調べ、そのどれか1つでも空 隙であれば、その画素を計測対象外に置き換えるエ ロージョン処理を数回行った後に近傍処理条件を付 けて粒子分離を行った。その後、同じ回数のダイレ ーション処理(エロージョン処理の逆の処理)によ って、元の状態に近似した。また、エロージョン処 理によってわずかな凹凸がより顕著な差になること

により、1つの粒子にも関わらず複数に分割されるこ とが起こる。それらを結合するために、近傍粒子の 同一視および微小粒子の統合を行った。 表1にX線C T装置での砕石の撮影条件を、表2に得られたX線CT 画像を用いた粒子形状計測時の粒子分離条件を示す。

最終的に、アスペクト比2.03、2.32および2.82に 調整できる破砕条件を求め、その3種類を粗骨材とし て使用することとした。

2.2 アスファルト試験板の作製

作製した砕石、粗砂、石粉、食物繊維およびポーラ ス改質アスファルトH型を用いてアスファルト混合物 を作製した。図4に完成した試験板の様子を、また表3 に材料の質量混合比率を示す。なお、使用時の砕石の 粒度は、アスペクト比によらずほぼ一定とした。185℃ に加熱した硬質砂岩砕石、粗砂、石粉と常温の食物繊 維を175℃のミキサを用いて全量を一度に30秒間混合 した。次に、175℃のポーラスアスファルトH型をミキ サに入れ90秒かき混ぜた。300×300×100mmの平板型枠 に、空隙率20%となる質量の試料を2層に分けてバイブ レーターである程度締め固めた。その後、ローラコン パクタで0.25MPaの圧力をかけて5回転圧した後、0.46M Paの圧力をかけて35回転圧して厚さ10cmに仕上げた。 これは、急に大きい圧力で転圧すると、型枠外へ材料 がはみ出るからである。締固め時の温度は155~160℃

表3 アスファルト混合物板の質量混合比率			
Aspect ratio	2.03	2.32	2.82
Material	Mixture rate (%)		
Crushed stone (4.75~9.50mm)	51	51.5	50
Crushed stone (9.50~16.0mm)	34.5	34.5	33.5
Coarse sand	9.5	9	11.5
Stone powder	5	5	5
Dietary fiber	0.1	0.1	0.1
Asphalt	5	5	5
Void ratio (%)		20	

防水材の設置状況 試験板下部からの流出状況 図5 見かけの流れやすさの計測の概要、防水材の 設置状況、および試験板下部からの流出状況

であった。各混合比で2体ずつ試験体を作製した。

2.3 現場透水試験器を使用した試験板の見かけの 流れやすさの計測

試験板の見かけの流れやすさを調べた。図5上に示す ように試験板上に現場透水試験器を載せ、舗装調査・ 試験法便覧⁵⁾の現場透水試験法を参考に透水試験を行 った。なお、試験法では試験板上面で水が流入する直 径が150mmであるが、試験板が小さく試験板側面から水 が流失し、測定には適さなかった。そこで、図5左下の ように水が試験板に流入する直径を75mmと小さくなる ように防水材を試験器の底面に取り付けた。そして、 測定は水頭600mmから400m1流下させた時間を15秒間に 換算した透水量と、図5右下に示すように試験板側面か ら撮影した動画から、試験板の上面に水が流入し始め てから、底面から排出し始めるまでの時間を初期透過 時間として計測した。

2.4 X線CT画像を用いた試験板内の砕石の方向性計 測

次に、コア試験体内部の骨材の配向性を検討するため、X線CT画像を取得し、砕石と同様に骨材粒子を同定した。その後、楕円体に近似した際の球相等径が4.75m

図6 コア試験体の粒子分離過程

表 4	コア試験体の撮影条件
<u>1</u>	

Tube voltage (kV)	145
Tube current (µA)	100
Resolution (mm)	0.123051
Cupper plate thickness (mm)	2
Frame rate (f/s)	3
Binning mode	2×2
Projection number	2000

表5 コア試験体の粒子分離条件

Threshold	26000
Erosion times	3
Distance considered as one particle (x Radius)	1.3
Dilation times	3
Removed small particle diameter (mm)	4.75
Combined small particle diameter (mm)	4.75

図7 コア採取位置と採取したコア試験体の例

m以上の粒子の長軸の鉛直方向の角度を求めた。

まず、図6に示すように、2.1節と同じソフトウェア でコア試験体のX線CT画像を空隙率20%となるように2 値化後、楕円体に近似して粒子分離を行い、長軸と短 軸の長さを推定した。表4および表5にコア試験体の撮 影条件と粒子分離条件を示した。

2.5 試験板内部の空隙構造を考察するための透水 試験

最後に試験板の鉛直と水平方向の透水性を検討する ため、図7に示す1~4の位置からコア試験体を採取し、 定水位透水試験を行った。コア試験体は、試験板の鉛 直方向の透水特性と、水平方向の透水特性を調べるた め、上面から2カ所、側面から2カ所採取した。供試体 は、ローラコンパクタにより図7の左右方向に締め固め ていたため、上面から採取する場合、型枠中央と左右 方向で異なる可能性を考慮して、締固め程度が同じと なる中央と手前からコア試験体1、2を採取した。その 後、側面から採取する場合、締固め程度が同じとなる ローラコンパクタ稼動方向の中央にあたる箇所からコ

図9 ジョークラッシャ破砕後の粒度とアスペクト比

ア試験体3、4を採取した。

図8にコア試験体定水位透水試験の概要と様子を示 す。水頭差は0~30cmの間で3パターン行った。試験で は、一つの水頭差で60秒間に外側の水槽から越流する 水量を3回採取し、3回の平均値から透水量を算出した。 なお、試験体上面の位置をカラム内で一定にできなか ったため、試験ごとに供試体上面から水面位置までの 高さを鋼製定規で計測して水頭差を求めた。

3. 実験結果と考察

3.1 破砕による粗骨材の形状の変化

図9に、ジョークラッシャにより破砕した際の粒度と アスペクト比の変化について示す。ここでは19~31.6m mの粒度にふるい分けた砕石2kgを用いて、ジョークラ ッシャの開口幅を12.5、20、25および30mmと変えた際

定水位透水試験 Mass rate passing through sieve (%) Before -10 min 30 min 60 min 3 6 7 8 910 20 30 40 4 5 Sieve size (mm) (a) 粒度の変化 § 30 Before -10 min 30 min 60 min 2 3 4 5 Aspect ratio (b) アスペクト比の変化

000000

Head difference

Overflow

図10 ボールミル処理後の粒度とアスペクト比

の結果を示している。

Shower

Overflow

Core sample

Water tank

Overflow

0

粒度の変化をみると、破砕前に比べて、開口幅が小 さくなるほど、曲線が左にシフトし、粒度が細かくな った。破砕後の最大粒径は開口幅とほぼ同じであった。

一方、アスペクト比は、開口幅12.5mmと20mmでは差 が小さいが、開口幅25mm、30mmと大きくなると最頻値 が右へシフトした。投入した粒子の最小寸法よりも開 ロ幅が小さすぎると、破砕箇所での滞留時間が長く、 すりもみ効果も生じてアスペクト比が小さくなると考 えられる。一方で、適度に開口していれば、滞留時間 が短くなり、圧壊の効果が高くなると考えられる。し たがって、必要な粒度範囲の下限以上の粒径の粒子を、 下限値と同じ幅に開口したジョークラッシャで破砕す ると、圧壊が適度に作用し、扁平な粒子を効率よく得 られると考えられた。 図10にボールミルにより破砕した際の粒度とアスペ クト比の変化について示す。ここでは、5~19mmの粒度 にふるい分けた砕石2kgを用いて、ボールミルの処理時 間を10、30および60分と変えた際の結果を示している。 粒度の変化をみると、明確な傾向は見られず、60分程 度の処理ではほぼ変化がなかった。なお処理時間10分 で粒度が細かくなっているが、これは採取した粒子の ばらつきが影響していると考えられる。アスペクト比 は、破砕前に比べて10分以上処理を行うと、少しずつ 減少した。すなわち、ボールミルでは、粒子の破砕効 果よりもロサンゼルス試験機と同様にすり減りによる 長軸方向の角取りの効果が高かったと考えられる。そ のため、アスペクト比を小さくするには長い処理時間 が必要だと考えられる。

以上の結果を受けて、表6のようにジョークラッシャ の開口幅とボールミルの処理時間を設定し、アスペク ト比の平均値が2.03、2.32および2.82となる砕石を作 製することとした。アスペクト比2.03では、ボールミ ル処理による粒度変化がほとんど無いため、処理後に5 ~20mmの粒度にふるい分けてそのまま使用した。アス ペクト比2.32は、入手した粗骨材をそのまま用いたこ とを示している。また、アスペクト比2.82の粒子を作 製する際には、効率よく扁平な粒子を作製するため、 破砕前にふるい分けて、それぞれの粒子をジョークラ ッシャで破砕、ふるい分け後、目標粒度となるように 混合したことを示している。

3.2 試験板の見かけの流れやすさの計測結果

試験板の見かけの流れやすさを調べた結果として、 図11にアスペクト比と透水量の関係、図12にアスペク ト比と初期透過時間を示す。

アスペクト比が大きくなると、およそ15秒間の透水 量は多く、初期透過時間は短くなった。初期透過時間 は試験板の上面に水が流入し始めて、底面から排出し 始めるまでの時間としたことから、この結果は、骨材 の形状が扁平なほど舗装面への水の侵入やその後の透 過までの速度が速いことを示していると考えられる。

3.3 コア試験体内の粗骨材粒子の角度の計測結果 図13にコア採取位置1におけるアスペクト比の違いに よる骨材粒子の長軸の鉛直方向からの角度を示す。長 軸が水平方向に向くと90°、鉛直方向に向くと0°また は180°となる。アスペクト比が大きくなると、0~30° および150~180°の割合が減り、70~110°の割合が増 加した。したがって、扁平な砕石を用いれば、横倒し の骨材が増えるといえる。当初考えていたように、扁 平な砕石を用いた場合、締固めの結果、長軸が水平方 向になるように配列された。

3. 4 コア試験体の定水位透水試験の結果

図14に定水位透水試験から得られたアスペクト比2.

03および2.83の骨材を用いたコア試験体の透水係数を 示す。一般には水頭差が変化しても透水係数は変化し ないが、砕石を用いた多孔質体の場合、既往の研究で は動水勾配が大きいほど乱流に起因する水頭損失が生 じて曲線的に流速が変化することが知られており、今

表6 決定した砕石作製条件

Aspect ratio	Particle range before processing (mm)	Opening width of jaw crushers (mm)	Processing time by ball mill (min)
2.03	5.00~20.0	—	30
2.32	5.00~20.0	—	—
	19.0~26.5	19.0	—
2.82	26.5~31.5	26.5	—
	21.5 40.0	21.5	_

回の範囲でも同様の結果となった⁶⁾。また,同じ水頭差 でも、アスペクト比が大きくなると透水係数は全体的 に小さくなった。ただし,採取方向によって,水頭差 の増加による透水係数の減少割合の明確な差は見られ なかった。

本研究では、同じふるいにとどまり、アスペクト比 が異なる粗骨材を使用した。そのため既往の研究⁷⁷から、 短軸や中軸の長さは同程度で長軸が異なると考えられ る。締固めにより、アスペクト比が大きいほど水平に 配置されたが、間隙構造は複雑で、採取方向による明 確な増加は見られなかったと考えられる。それよりも、 アスペクト比が大きいほど、透水係数自体が小さくな った。以上から、見かけの流れやすさの計測では、ア スペクト比が大きいほど、上部から流入した水が、透 水係数の低下や粒子の壁で阻まれ、横方向に広がった 透水範囲が広がったと考えられる。

4. まとめ

本研究で得られた結果を以下にまとめた。

(1) 必要な粒度範囲の下限以上の粒径の粒子を下限値 と同じ幅に開口したジョークラッシャで破砕する と、圧壊作用により扁平な粒子を効率よく得られた。 一方、ボールミルでは破砕よりもすり減りによる角 取りの効果は高く、アスペクト比は少しずつ増加し た。

- (2) アスペクト比2.03, 2.32, 2.82の砕石を用いたア スファルト試験板では、骨材の形状が扁平なほど舗 装面への水の侵入やその後の最初に水が試験板を 通過するまでの時間が短かった。
- (3) 試験版のコア試験体の計測では、扁平な砕石を用いれば、横倒しになる粗骨材が増える傾向にあったが、アスペクト比が小さいほど透水係数の変化が大きいが、採取方向で明確な差はなかった。

以上より、見かけの流れやすさの計測では、アスペ クト比が大きいほど、上部から流入した水が、透水係 数の低下や粒子の壁で阻まれることで横方向に広がっ た。つまり、透水範囲が広がったと考えられる。一方 で、締固めにより、アスペクト比が大きいほど水平に 配置され、水平方向の透水係数が増加すると考えたが、 間隙構造は複雑で明確な増加は見られなかった。今後、 アスペクト比の変化による空隙構造と流れの乱れにつ いて詳細な検討を行いたい。

謝辞

本研究はJSPS科研費 19H02252および2020年度昭瀝 記念財団研究助成の助成を受けたものです。

参考文献

- 日本道路協会:舗装施工便覧平成18年度版、丸善、 2006.
- 2)日本コンクリート工学会性能設計対応型ポーラス コンクリートの施工標準と品質保証体制の確立研 究委員会:性能設計対応型ポーラスコンクリートの 施工標準と品質保証体制の確立研究委員会報告書、 日本コンクリート工学会、2015.
- 3) 麓隆行:新しい機構のX線CTの開発とポリマーコン クリートの圧縮試験への適用、土木学会論文集E2、 Vol. 69、No. 2、pp. 182-191、2013.
- 4) 麓隆行:X線CTを用いた3次元画像計測のポーラスコンクリート内部の物性評価への適用性、コンクリート工学年次論文集、Vol. 36、No. 1、pp. 1672-1677、2014.
- 5) 日本道路協会: 舗装調查·試験法便覧、丸善、2007.
- (3) 浅野勇、林田洋一、増川晋、田頭秀和:ポーラス コンクリートを通過する流れの流速と動水勾配 の関係、農村工学研究所技報、Vol. 210、pp227 -241、2009
- 7) 麓隆行、平井真一、溝口達也、松本嶺: X線CT 画像の3次元粒子計測による砕石の粒子形状の分 析、コンクリート工学会年次論文集、Vol. 34、 No. 1、pp. 70-75、2012.

(2021年10月16日受付 2022年2月8日受理)