# 石炭灰の結晶化挙動を活用した 砕石微粒分の園芸用粒状土化の可能性について

FEASIBILITY STUDY ON PREPARATION OF HORTICULCURAL GRANUKLAR SOIL FROM WASTE FINE STONE USING CRYSTALLIZATION REACTION IN COAL FLY ASH

和嶋隆昌\* · 中村誉\*\*

by Takaaki WAJIMA, and Homare NAKAMURA

# 1. はじめに

砕石業では岩石の破砕等の工程で副産物として砕石 微粒分が砕石生産量の約10%(1700万トン/年)発生 しており、埋立て処分場の不足にともない有効利用法 が求められている<sup>1)</sup>。砕石微粒分はカリウムなどの栄養 塩を含む鉱物を含有する場合が多く、微粒分を粒状に 固化することで赤玉土のような園芸用粒状土として有 効利用できる可能性が期待できる。

一方、火力発電では燃料である石炭の燃焼により石 炭灰が年間1200 万トン発生しており、2017年以降は発 生量が横ばい傾向にある。東日本大震災以降、石炭火 力発電はベースロード電源に位置づけられており、今 後も発生する石炭灰の有効利用は重要な課題となって いる<sup>2.3</sup>。

石炭灰では1050 ℃程度まで急速に加熱することで アモルファス相がクリストバライト化し、この結晶化 作用により硬化する挙動が報告されている<sup>33</sup>。この硬化 挙動を活用することで細かい粉状の砕石微粒分を粒状 に硬化できれば、大量に発生する産業副産物である砕 石微粒分と石炭灰をフライアッシュ人工骨材製造プロ セスと同様にロータリーキルンなどで連続的に処理す ることで<sup>55</sup>、園芸用粒状土として有効利用できる可能性 がある。

そこで、本研究では、その可能性を探るため、国内 の様々な砕石微粒分を石炭灰と混合した急速加熱によ る硬化の可能性を検討した。得られた硬化体の最大荷 重を比較し、石炭灰混合材料において留意すべき一つ である溶出物の分析を行った。

# 2. 試料および実験方法

試料として石炭灰はフライアッシュⅡ種、砕石微 粒分は国内の砕石業者から発生した11種類の微粒 分を用いた。それぞれの化学組成と様子を表1と図1 に示す。

ルレス - ヘリーン (NAZ 500N、INADA級) を用いて、載荷速度30 mm/minで載荷し圧壊する最大荷重の測定を行った。また、加熱前後の各試料の鉱物組成を粉末X線回折装置(XRD、MiniFlex600、Rigaku製)で同定した。

<sup>\*</sup> 千葉大学大学院工学研究院 准教授(〒263-8522 千 葉市稲毛区弥生町1-33)、\*\* 千葉大学工学部都市環 境システム学科

各試料からの溶出を環境庁告示46 号溶出試験を 参考に次のようにして調べた。まず、硬化体試料を 乳鉢と篩を用いて250µm以下に粉砕・分級し、粉砕 した試料(2g)を蒸留水(20mL)とともに50mLの 遠沈管に添加し、200min<sup>-1</sup>で6時間振とうした。振 とう後に3000rpmで遠心分離した後に孔径0.2µm メンブレンフィルターでろ過を行い、得られた溶液 のpHをpHメーター(D-73、Horiba)で、栄養塩であ るカリウム、マグネシウム、カルシウムの溶出量を 原子吸光分析装置(AAnalyst200、PerkinElmer) で測定を行った。また、代表的な土壤汚染物質とさ れるカドミウム、鉛、銅、セレン、ヒ素、ホウ素の 溶出量を高周波誘導結合プラズマ発行分光分析装置 (ICP、Avio500、PerkinElmer製)で測定を行った。

なお、市販の赤玉土(RS)の最大荷重と溶出量を同 様の方法で測定し、参考値とした。



#### 3. 結果および考察

## 3.1 石炭灰

加熱前後の石炭灰の外観とXRDパターンを図3と図4 に示す。加熱温度900、1000、1100℃で石炭灰の硬化が 確認され、加熱温度が高くなると硬化体の色は白くな る様子が観察された。石炭灰は、Quartz(SiO<sub>2</sub>)、Lime (CaO)、Mullite(Si<sub>2</sub>Al<sub>6</sub>O<sub>13</sub>)を含み、900、1000 ℃で 加熱した石炭灰のXRDパターンは未処理と同様であっ たが、1100 ℃で加熱した石炭灰ではクリストバライト (SiO<sub>2</sub>)のピークが新たに確認できた。なお、各加熱試 料の最大荷重は、900 ℃で0.7 N、1000 ℃で5.0 N、11 00 ℃で58.0 Nであり、クリストバライトの生成が確認 された1100 ℃において大幅な最大荷重の増加が確認 された<sup>4</sup>。



図3 加熱前後の石炭灰の外観:(i)未加熱、(ii) 900°C、 (iii) 1000°C、(iv) 1100°C



#### 3. 2 砕石微粒分

1100 ℃で加熱した各試料の最大荷重を表2に示す。C AとC5、C7、C8、C9で硬化が確認され、他は加熱により 硬化しなかった。

| 表2  | 硬化]     | た試料の | 最大荷重  |
|-----|---------|------|-------|
| 124 | TX LL L | //   | 収八旧 里 |

|      | CA   | C1 | C2 | C3 | C4 | C5    | C6 | C7   | C8  | C9   | C10 | C11 |
|------|------|----|----|----|----|-------|----|------|-----|------|-----|-----|
| 最大荷重 | 58.0 | Х  | Х  | Х  | Х  | 106.1 | Х  | 23.9 | 5.0 | 13.2 | Х   | Х   |

加熱前と900、1000、1100℃で加熱した後のC5、C7、 C9の外観とXRDパターンを図5と図6に示す。各試料は加 熱により白茶色になり、加熱温度が高くなるにつれて 色が濃くなる傾向が見られた。加熱温度900℃でC5とC7 ではムライトが、C9ではマグネタイトの生成が確認さ れ、1000℃では試料中に含まれる粘土鉱物の一つであ るマイカのピークが消失した。

900、1000、1100℃で加熱したC5、C7、C9の最大荷重 を表3に示す。すべての試料で加熱温度が高くなると最 大荷重が増加し、特に1000℃から1100℃で大幅に増加 する傾向が見られた。

表3 加熱により硬化した試料の最大荷重(N)

|    | 900°C | 1000°C | 1100°C |
|----|-------|--------|--------|
| C5 | 4.2   | 37.2   | 106.1  |
| C7 | 3.0   | 5.7    | 23.9   |
| С9 | 1.0   | 3.3    | 13.2   |



図5 加熱した試料の外観: (i)C5、(ii)C5-900°C、(iii)C5-1000°C、(iv)C5-1100°C、 (v)C7、(vi)C7-900°C、(vii)C7-1000°C、(viii)C7-1100°C、 (ix)C9、(x)C9-900°C、(xi)C9-1000°C、(xii)C9-1100°C

加熱前と900、1000、1100℃で加熱した後のCA、C5、 C7、C9からのカリウム、マグネシウム、カルシウムの 溶出量と溶出液のpHを表4に示す。すべての試料におい てカリウムの溶出量は加熱により加熱前に比べて増加 するが、900、1000℃に比べて1100℃での加熱では溶出 量が減少した。マグネシウムはすべての加熱物におい て2 mg/L以下と溶出量が少なかった。カルシウムはCA では加熱により溶出量が減少し、C5、C7、C9では増加 した。溶出液のpHは、CAでは加熱により減少し、C5、C 7、C9で増加した。CAはクリストバライト化により各元 素の溶出量が減少すると推察される。

表4 加熱硬化した試料からの溶出量と溶出液のpH

|    | Temperature | El   |      |       |      |
|----|-------------|------|------|-------|------|
|    | (°C)        | K    | Mg   | Ca    | рН   |
| CA |             | 1.6  | 8.4  | 58.5  | 8.1  |
|    | 900         | 9.5  | 1.7  | 43.9  | 7.5  |
|    | 1000        | 7.0  | 0.3  | 23.2  | 7.3  |
|    | 1100        | 0.7  | 0.6  | 2.5   | 7.4  |
| C5 |             | 0.3  | 1.1  | 1.2   | 6.9  |
|    | 900         | 25.1 | 0.7  | 0.8   | 7.1  |
|    | 1000        | 37.6 | 0.7  | 5.5   | 7.0  |
|    | 1100        | 1.7  | 0.3  | 7.2   | 7.1  |
| C7 |             | 6.3  | 13.3 | 45.0  | 7.3  |
|    | 900         | 18.1 | 0.2  | 51.7  | 12.0 |
|    | 1000        | 1.1  | 0.2  | 193.4 | 11.2 |
|    | 1100        | 0.3  | 0.3  | 116.5 | 11.0 |
| C9 |             | 6.0  | 0.2  | 10.1  | 7.6  |
|    | 900         | 24.3 | 0.4  | 38.0  | 9.9  |
|    | 1000        | 10.8 | 0.3  | 31.0  | 9.5  |
|    | 1100        | 1.7  | 0.1  | 20.7  | 9.3  |
|    |             |      |      |       |      |



(i) C5、(ii) C7、(iii) C9

#### 3.3 混合物

1100 ℃の加熱で硬化した試料としてC9、硬化しなかった試料としてC11をそれぞれ選定し、各比率でCAと混合し、1100 ℃で急速加熱して得られた硬化体を調べた。

1100 ℃で加熱したC9、C11、CAとその混合物の外観 とXRDパターンを図7と図8に示す。CAの混合により加熱 物の色は白くなり、硬化しなかったC11はCAの混合によ り硬化することを確認した。C9とCAの混合物ではクリ ストバライトが、C11とCAの混合物ではクリストバライ トとビーライトが生成することが分かった。



図7 加熱した試料の外観: C9:CA (i)1:0、(ii)2:1、(iii)1:1、(iv)1:2、 C11:CA (v)1:0、(vi)2:1、(vii)1:1、(viii)1:2、(ix)0:1



図8 加熱した混合物のXRDパターン: (i) C9とCAの混合物 (ii) C11とCAの混合物

得られた硬化体の最大荷重を図9に示す。CAの混合に より最大荷重が増加し、混合比に関わらず20 N以上の 最大荷重を持つことが分かった。なお、参考値である 赤玉土の最大荷重は18.8 Nであった。クリストバライ トの結晶化により最大荷重の増加が起こり、砕石微粒 分の硬化に利用できることが確認された。





1100℃で加熱した後のCAとC9、C11の混合物からの カリウム、マグネシウム、カルシウムの溶出量と溶出 液のpHを表5に示す。すべての混合試料においてカリウ ムの溶出量は1-3 mg/L、マグネシウムは1 mg/L以下と 溶出量が少なかった。カルシウムはCAの混合量が増え るにつれて溶出量が減少した。混合したCAによるクリ ストバライトの結晶化によりカルシウムの溶出が抑制 されると推察される。なお、pHは混合による大きな変 動は見られず、8以上のアルカリ性を示した。

|     | Datia | El   | ъU  |       |      |  |
|-----|-------|------|-----|-------|------|--|
|     | Kallo | K Mg |     | Ca    | рп   |  |
| С9  |       | 1.7  | 0.1 | 20.2  | 9.3  |  |
|     | 2:1   | 1.5  | 0.3 | 11.7  | 9.9  |  |
|     | 1:1   | 2.0  | 0.4 | 6.5   | 9.3  |  |
|     | 1:2   | 1.4  | 0.4 | 2.8   | 8.0  |  |
| C11 |       | 42.3 | 2.2 | 633.7 | 12.6 |  |
|     | 2:1   | 2.3  | 0.2 | 856.3 | 13.0 |  |
|     | 1:1   | 1.3  | 0.2 | 742.6 | 13.0 |  |
|     | 1:2   | 1.9  | 0.2 | 741.8 | 13.0 |  |
| CA  |       | 0.7  | 0.4 | 5.7   | 8.0  |  |
| RS  |       | 22.4 | 0.9 | 2.4   | 6.1  |  |

表5 加熱硬化した試料からの溶出量と溶出液のpH

このことから、CAの混合によりクリストバライトの 結晶化が作用することで混合物の最大荷重が増加し、 栄養塩を溶出する園芸用粒状土として利用できる造粒 物を調製に利用できると考えられる。 1100℃で加熱した後のCAとC9、C11の混合物からのカ ドミウム、鉛、銅、セレン、ヒ素、ホウ素の溶出量を 表6に示す。カドミウム、鉛、銅、セレンの溶出は土壌 環境基準以下であったが、ヒ素、ホウ素が土壌環境基 準以上の溶出が確認された。CAのクリストバライトの 結晶化により硬化はできるが、ヒ素、ホウ素の溶出は 抑制できないことが明らかになった。今後、ヒ素、ホ ウ素の抑制についても検討する必要がある。

|      | D.C.  | Elution (mg/L) |        |       |        |        |      |  |
|------|-------|----------------|--------|-------|--------|--------|------|--|
| _    | Katio | Cd             | Pb     | Cu    | Se     | As     | В    |  |
| С9   |       | < 0.01         | < 0.01 | < 125 | < 0.01 | 3.1    | 0.32 |  |
|      | 2:1   | < 0.01         | < 0.01 | < 125 | < 0.01 | 2.8    | 1.8  |  |
|      | 1:1   | < 0.01         | < 0.01 | < 125 | < 0.01 | 2.2    | 1.9  |  |
|      | 1:2   | < 0.01         | < 0.01 | < 125 | < 0.01 | 2.1    | 1.3  |  |
| C11  |       | < 0.01         | < 0.01 | < 125 | < 0.01 | 0.1    | 0.38 |  |
|      | 2:1   | < 0.01         | < 0.01 | < 125 | < 0.01 | 0.04   | 5.6  |  |
|      | 1:1   | < 0.01         | < 0.01 | < 125 | < 0.01 | 0.04   | 6.8  |  |
|      | 1:2   | < 0.01         | < 0.01 | < 125 | < 0.01 | 0.02   | 6.9  |  |
| CA   |       | < 0.01         | < 0.01 | < 125 | < 0.01 | 1.4    | 2.4  |  |
| RS   |       | < 0.01         | < 0.01 | < 125 | < 0.01 | < 0.01 | < 1  |  |
| Star | ndard | 0.01           | 0.01   | 125   | 0.01   | 0.01   | 1    |  |

表6 加熱硬化した試料からの土壌汚染物質の溶出量

## 4. おわりに

本研究では、砕石微粒分を石炭灰の急速加熱による クリストバライトの結晶化作用を用いて硬化させるこ とで園芸用粒状土化の可能性を調べた。その結果、石 炭灰と混合し1100 ℃で急速加熱することで微粒分を 園芸用粒状土として利用可能な最大荷重に硬化できる ことが分かった。しかしながら、溶出試験において溶 出液のpHはアルカリ性を示し、溶出成分としてヒ素、 ホウ素の土壌環境基準以上の溶出が確認された。これ らの硬化や溶出の挙動へのクリストバライト化の影響 についての詳細なメカニズムは不明であり、今後、溶 出の抑制を含めてメカニズムを解明し、新たな硬化技 術の開発を目指していく予定である。

#### 参考文献

- 1) 骨材資源工学会:骨材資源ハンドブック(2020)
- 2) 石炭エネルギーセンター:石炭灰全国実態調査報告 書(2021)
- 3) 日本フライアッシュ協会:石炭灰ハンドブック(201
  5)
- 4)M.Y.A. Mollah, S. Promreuk, R. Schennach, D. L. Cocke, and R. Guler: Cristobalite formation from thermal treatment of Texas lignite fly ash, Fu

el, Vol. 78, pp. 1277-1282 (1999)

5) 石井國義、是石俊文、三原治郎、佐藤茂樹、照喜名 二郎:石炭灰の人工軽量骨材化、日本化学会誌、Vol.

5, pp. 431-441 (1992)

(2021年9月17日受付 2022年1月31日受理)